Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin Methods for Advection-diffusion-reaction Problems
We apply the weighted-residual approach recently introduced in [7] to derive dis-continuous Galerkin formulations for advection-diffusion-reaction problems. We devise the basic ingredients to ensure stability and optimal error estimates in suitable norms, and propose two new methods. 1. Introduction. In recent years Discontinuous Galerkin methods have become increasingly popular, and they have ...
متن کاملDiscontinuous Galerkin Methods Based on Weighted Interior Penalties for Second Order PDEs with Non-smooth Coefficients
We develop and analyze a Discontinuous Galerkin (DG) method based on weighted interior penalties (WIP) applied to second order PDEs and in particular to advection-diffusion-reaction equations featuring non-smooth and possibly vanishing diffusivity. First of all, looking at the derivation of a DG scheme with a bias to domain decomposition methods, we carefully discuss the set up of the discretiz...
متن کاملOptimized Schwarz Waveform Relaxation and Discontinuous Galerkin Time Stepping for Heterogeneous Problems
We design and analyze a Schwarz waveform relaxation algorithm for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. The interfaces are curved, and we use optimized Ventcell transmission conditions. We analyze the semidiscretization in time with discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite ...
متن کاملRobust smoothers for high order discontinuous Galerkin discretizations of advection-diffusion problems
The multigrid method for discontinuous Galerkin discretizations of advection-diffusion problems is presented. It is based on a block Gauss-Seidel smoother with downwind ordering honoring the advection operator. The cell matrices of the DG scheme are inverted in this smoother in order to obtain robustness for higher order elements. Employing a set of experiments, we show that this technique actu...
متن کاملLocal Error Analysis of Discontinuous Galerkin Methods for Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems
This paper analyzes the local properties of the symmetric interior penalty upwind discontinuous Galerkin method (SIPG) for the numerical solution of optimal control problems governed by linear reaction-advection-diffusion equations with distributed controls. The theoretical and numerical results presented in this paper show that for advection-dominated problems the convergence properties of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2009